Wellbore Stability Analysis Based on a New True-triaxial Failure Criterion

نویسنده

  • Adel Al-Ajmi
چکیده

Wellbore stability analysis based on a new true-triaxial failure criterion i Abstract A main aspect of wellbore stability analysis is the selection of an appropriate rock failure criterion. The most commonly used criterion for brittle failure of rocks is the Mohr-Coulomb criterion. This criterion involves only the maximum and minimum principal stresses, σ 1 and σ 3 , and therefore assumes that the intermediate stress σ 2 has no influence on rock strength. When the Mohr-Coulomb criterion had been developed, it was justified by experimental evidence from conventional triaxial tests (σ 1 > σ 2 = σ 3). Based on triaxial failure mechanics, the Mohr-Coulomb criterion has been extensively used to represent rock failure under the polyaxial stress state (σ 1 > σ 2 > σ 3). In contrast to the predictions of Mohr-Coulomb criterion, much evidence has been accumulating to suggest that σ 2 does indeed have a strengthening effect. In this research, I have shown that Mohr-Coulomb failure criterion only represents the triaxial stress state (σ 2 = σ 3 or σ 2 = σ 1), which is a special case that will only occasionally be encountered in situ. Accordingly, I then developed a new true-triaxial failure criterion called the Mogi-Coulomb criterion. This failure criterion is a linear failure envelope in the Mogi domain (τ oct-σ m,2 space) which can be directly related to the Coulomb strength parameters, cohesion and friction angle. This linear failure criterion has been justified by experimental evidence from triaxial tests as well as polyaxial tests. It is a natural extension of the classical Coulomb criterion into three dimensions. As the Mohr-Coulomb criterion only represents rock failure under triaxial stress states, it is expected to be too conservative in predicting wellbore instability. To overcome this problem, I have developed a new 3D analytical model to estimate the mud pressure required to avoid shear failure at the wall of vertical, horizontal and deviated boreholes. This has been achieved by using linear elasticity theory to calculate the stresses, and the fully-polyaxial Mogi-Coulomb criterion to predict failure. The solution is achieved in closed-form for vertical wellbores, for all stress regimes. For deviated or horizontal wellbores, Mathcad programs have been written to evaluate the solution. These solutions have been applied to several field cases available in the literature, and the new model in each case seems to be consistent with the field experience. ii Wellbore stability analysis based …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New empirical failure criterion for shale

A new failure criterion was presented to predict the ultimate strength of shale under the triaxial and polyaxial state of stress. A database containing 93 datasets was obtained from the results of the uniaxial, triaxial, polyaxial compressive tests, an indirect tensile test was collected from reliable references, and this test was carried out on the shale samples taken from the southwestern oil...

متن کامل

Wellbore Trajectory Optimization of an Iranian Oilfield Based on Mud Pressure and Failure Zone

Determination of the borehole and fracture initiation positions is the main aim of a borehole stability analysis. A wellbore trajectory optimization with the help of the mud pressure may be unreasonable since the mud pressure can only reflect the degree of difficulty for the initial damage to occur at the wellbore rather than the extent of the wellbore damage. In this work, we investigate...

متن کامل

Geomechanical Sanding Prediction in Oil Fields by Wellbore Stability Charts

Sand production is a universally encountered issue during the exploration of unconsolidated sandstone reservoirs particularly during production. The production of sand particles with the reservoir fluids depends on the stress around a wellbore and the properties of the reservoir rocks and fluids. Therefore, it is crucial to predict under what production conditions sanding will occur and when sa...

متن کامل

Development of a mechanical earth model in an Iranian off-shore gas field

Wellbore instability is a quite common event during drilling, and causes many problems such as stuck pipe and lost circulation. It is primarily due to the inadequate understanding of the rock properties, pore pressure, and earth stress environment prior to well construction. This study aims to use the existing relevant logs, drilling, and other data from offset wells to construct a precise mech...

متن کامل

Prediction of ultimate strength of shale using artificial neural network

A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006